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The perturbation method is used to solve the problem concerning the state of 
stress of a randomly inhomogeneous half-space under the condition of macro- 

homogeneous state of stress. Finite formulas for the statistical characteristics 
of the stresses at the boundary of the half-space are obtained. Problems con- 

cerning the state of stress of randomly inhomogeneous media were studied in 
[ 1 - 5 ] for a plane, a half -plane and a full-space. 

An analogous problem in displacements was solved in [ 6 1, although no 
proof was given of the independence of the deformations and stresses on the 
values assumed by the elastic moduli outside the region occupied by the body 

the equilibrium of which was under investigation. 

1. Let a macrohomogeneous stress-strain state be realized in an inhomogeneous 
half-space (~3 > 0) 

CJ$’ = (Uij), ej8' = (eij) 
(1.1) 

Here and henceforth the angle brackets denote the operation of mathematical expectation. 
We write the stresses and strains in the form 

(I.. = a!? + .w 
13 r3 23 7 eij zrz e$’ + e$’ (1.2) 

where j U#) and eif(‘) represent the fluctuations in the values of stresses and strains. 

Hooke’s Law and the equations of compatibility of deformations are 

eij = SlUij - SzUg&ij; i.91 = & , S, = 2 Y 
2G i+v 

(1.3) 

Qjk%dh, jm 3 0 (1.4) 
Here Si are the pliability moduli related to the shear modulus G and the Poisson ‘s 
ratio ‘V, and &i jk denotes a unit antisymmetric Levi - Civita pseudotensor. 

Let us set ( Sk(l) denote the fluctuations in the values of pliability moduli ) 

&?) = 8, - s(ko) , ‘!$’ = (Sk) (1.5) 

Substituting (1.2 ) and (1.3 ) into (1.4) and using (1.5 ) , we obtain 

(1.6) 

Vij = da% (Sif\j - Sl, ll$j) + U$‘S~)kh- - U$)s, ki _ U$SF)ik + 

U$‘Sl, k&j + (3% (Sg’lldij - Sk\j) ’ 

where qr~ denotes the incompatibility tensor. In addition, the stresses Uij(r) must 
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satisfy the equilibrium equations and the boundary conditions 

a& = 0, q3 Ix** = 0 (1= 1, 2, 3) 

Let us write Sk(l) in the form of Fourier integrals 

Sc,l) = JJJ fr (0) exp (iox) do (k = 1, 2) 
-0D 

(1.7 1 

(1.8) 

where .fk (0) is a generalized random function. We seek the solution of the system 

(1.6 ) , (1.7 ) in the form 

oif’ = x$3’ + xjj’ 

where x#) is a particular solution of (1.6 ) and xii(‘) is a general solution of the 

homogeneous system corresponding to (1.6 ) , Using the boundary conditions of ( 1.7 ) , 
we obtain the boundary conditions for the solution of the homogeneous system 

Let us write Tij(l) in the form 

OD sss (1.10) 
,!!) = 

13 aif) (0) fk (0) exp (iwx) do (k = 1, 2) 
--m 

Substituting (1.10 ) into (1.6 ) and using (1.8 ) , we obtain 

Qj = $’ + T)is’, $’ = O$i (Sp'llSij - Sp)j) 
3 9 X = 1 _ v 

0 

and we can confirm by direct substitution that (1.10 ) satisfies (1.7 ) . 
We seek a solution of the homogeneous system (1.6) identically satisfying ( 1. ‘i ), 

in the Krutkov ‘s form of [ 7 ] 

(1.11) 

Here ‘?ii denote arbitrary harmonic functions , and Y is a particular solution of the equation 

* v2y = Cpij, ij (1.12) 

Substituting ‘PII = (P22 = Q33 = Q3IQ33 c Q2, Cp13 G QI~ (p12 - 0 into the ex- 

pression within the brackets in (1.11) , we find from (1.12 ) 
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?-_ I;, 
5% i (i = 1, 2) (1.13) 

Taking into account the condition that the stresses ‘ii @) vanish at infinity, we 
write the harmonic functions vr (k = 1, 2, 3) in the form 

co 

(Pk. = SJ 
up’ (0) fn (w) exp (io,x, - O*CC~) dw, (n = 1, 2) (1.14) 

-m 

x* = @I? C?), a* = (% (Jkt 

Using now (1.10 ) , (1.14 ) , (1.13 f and (1.11) , we obtain the following final expressions 
for the stress perturbations : 

(1) m oij 5 
d'!'J 

[a$'fk exp(i03z3) + !A& exp (- w*z3)] exp(io,z,)do 
(1.15) 

-ca 

g-p = i s3 i - -$- ~*z~~~~~~~) + ico*%@f 1 (i, i I= 1, 2, 3; k, I, m = 1, 2) 

where a,(N (k = 1, 2; m = 1, 2, 3) are obtained from the boundary conditions 

(1.9) 

The formulas (1.15 ) contain Fourier transforms fly of the functions Sk(‘) @ = 
1, 2) and this seems to imply, at first sight, the necessity of defining these functions 

on the whole space in order to determine the stresses in the half-space. We shall show 
that this is not so, i. e. that Sk(‘) at X3 < 0 do not affect the values of the stresses 
at X3 > 0. We have for the functions fk 

m 

fk (0) = & { F~.(o~, w8, us) exp(- iw3u3)du3 (k _ 1, 2) (1.17) 

Fk (f%* Q2, %> = & ~~ S’,“(U) exp (- io*a*) du, 
--Cm 
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Using (1.17 ) we can reduce the Fourier transform in z,., zz of the stresses al,,,(l) 

(rr, 2s+ 5s) in (1.15) to the form 

P~,@‘IY “2, ~3) = 1 Gl,(wl, w2,x3, u3)du3 (1.18) 
--Q) 

Af2 exp (- iw,q)j exp (- iogh) c-b3 

A[fft = * l. + (~~~.~~~ - z~*~~~) opfzp + i (2~~~~~~) - cl&? - 

%dk)) a* + (vw4l (k) (1, m, p, k=f, 2) 

Direct computation of the integral in (1.18 ) shows that Gr,,, (01, 02, Xs, Us)= 0 
when ~a < 0, and this proves that P I,,, (WI, 02, 5s) is independent of Sk(l) (u) 
when us ( 0. The calculations are identical for the remaining three stresses. 

2, We assume that the random fields Sk 0) (k = 1, 2) are statistically homo - 
geneous and isotropic, connected by statistically homogeneous and isotropic relations, 
and have the following known correlation functions : 

KI?B(W = GP(X) sax--i- a> 

and write the components of the correlation stress tensor 

&?st (XT x”) = <op* (x) % (x’)> 

in the following form (where a prime denotes complex conjugate quantities ) : 

(2.1) 

exp [io, (x*’ - x*)] do 
OD 

‘ytC “,1;* ~&‘(‘) are obtained from AP,(k) (see (1.18 > ) by replacing P, Q, and k by 
; ss by xa’ and a,(“) by 4,(l) . The remaining components of the cor- 

relation tensor can be obtained in the same way. 

We see from (2.1) that the stress field is stationary along the axes 21 and +,#nd 
nonstationary in the direction of $a* i. e. 
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Let us inspect the stresses cTij(‘) (i, j = 1, 2) at the boundary of the half-space 
5s = 0. We set v = Y. = const in the formulas connecting 8, (k = 1, 2) 

with the Poisson’s ratio V and shear modulus G , Then 6’s (x) = v. (1 + yo)-1 

81 (x) = S (x), Let us again limit ourselves to the case when ~~~0) = bss(O) = 
p, aIs = o,,(O) = o,,(O) = (~~~(0) = 0. The expressions for the correlation func- 

tions (2.1) at the boundary of the half-space will have the following form : 

K,,,p (g) = $ (\ & (4x2 (w*2 - wp2) [(x - 1) w*2 - wp2] ;( (2.2 1 

I-cm 
(XW? - w*,2) + w*2 [x (02 + w*2 - wp2) - w,2]2}cD(w) exp (io,&.)do 

Krras (E) = -$ $$ -& {W (x69 - 0,“) (2xor%Q - w*“) + 

2ix20*0, (x~~m- 0*2) (Q 2 1 - co27 + co*2 [x (co2 -/- 012) - 0*2] x 

[x (a2 + wz2) - co,“]} Q (0) exp (io&,) cl0 

K,s,s(g) = $QK2 s [4x203 - (4x -1) o+2] @(co) exp (io&,)do 
“, 

p = 1, 2, CL3 = -& ) so = (S(z)) 

Passing in (2.2 ) to the spherical coordinates and integrating over the angles we obtain, 

e.g. for K1,,, and K,21, 

Kl212(E*) = &2n2- $&.A 5 [(I -. 4%) f & J-v, (Q) J% (Q) - 
IJ 

4x2 4 * Jf,, (@_I CD (0) do 

m ‘2 . 
K1311G*) = P"fi" &, 

s {I 
2(4x-1)&-$+5--~- 

0 

The remaining components of the correlation tensor have the same form, but are not 
given here because of their length. 

Assuming E, = 0, we obtain the following formulas for the dispersions : 

D 
Cl" 4n 

1111= yr-j?y (I 5x4 - 32x3 + 44x2 - 28x + 8) D (2.3 1 

D 
IL’ r,aT 1122 = x” 15 (5x4 - 24x3 + 42x2 - 28x + 8) D 

D,,,, = Dnnr DEW = Dl222 = 0 

D - 1""1"(5%4 _ 4%3 + x2)D 
1212 - %'L 1cj 
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Let us write (2.3) in the form Dijkr = p2Dv2 (4 i, k, 1 = i,2), where 1’ denotes 
the so-called variability coefficient. Computing v for the case v. = 0.25 yields the 

following result : 

i=j=k=1=1andi=j=k=l=2, $=2.76 

i = j = 1; k = 1 = 2, ~2 = 2.96 

i = k = 1; j = I = 2, ~2 = 0.675 

and the corresponding values of the variability coefficient for the space are ( *) 2.51, 
1.69 and 0.322. 

The above computations show that the increase in dispersion (especially in Dills 
and &)‘ caused by the boundary is substantial, and must undoubtedly be taken into 

account in practical computations. 
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